Higman's theorem
WebMar 24, 2024 · Hoffman-Singleton Theorem. Let be a -regular graph with girth 5 and graph diameter 2. (Such a graph is a Moore graph ). Then, , 3, 7, or 57. A proof of this theorem is … WebBasic terms to understand Higman's Theorem in Theory of Computation: Σ is a finite alphabet. For two given strings x and y which belongs to Σ*, x is a subsequence of y if x can be obtained from y by deleting zero or more alphabets in y. L be a language which is a proper subset of Σ*. SUBSEQ (L) = {x : there exists y ∈ L such that x is a ...
Higman's theorem
Did you know?
WebFor its proof, we show in Theorem 6.1 that the outer automorphism group of the Higman–Sims group HS has order 2. Theorem 6.1. Let G = hR, S, C, Gi ≤ GL22 (11) be constructed in Theorem 4.2. Then the following assertions hold : (a) Conjugation of G by the matrix Γ ∈ GL22 (11) of order 2 given below induces an outer automorphism of G of ... WebThe Higman-Sims graph is the unique strongly regular graph on 100 nodes (Higman and Sims 1968, Brouwer 1983, Brouwer and Haemers 1993). It was also constructed …
WebApr 1, 1975 · It was first studied thoroughly in Theorem B of Hall and Higman (10). In this sequence of papers we look at the basic configurations arising out of Theorem B. In Hall-Higman Type Theorems. WebS1. Introduction. Our work is based on a remarkable theorem of Higman [22],1 given below as Theorem 1.3. Convention: is a nite alphabet. Definition 1.1. Let x;y2 . We say that xis a subsequence of yif x= x 1 x nand y2 x 1 x 2 x n 1 x n. We denote this by x y. Notation 1.2. If Ais a set of strings, then SUBSEQ(A) is the set of subse-quences of ...
Higman was born in Louth, Lincolnshire, and attended Sutton High School, Plymouth, winning a scholarship to Balliol College, Oxford. In 1939 he co-founded The Invariant Society, the student mathematics society, and earned his DPhil from the University of Oxford in 1941. His thesis, The units of group-rings, was written under the direction of J. H. C. Whitehead. From 1960 to 1984 he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. WebTheorem 1 (Higman [1]). SUBSEQ(L) is regular for any L ⊆Σ∗. Clearly, SUBSEQ(SUBSEQ(L)) = SUBSEQ(L) for any L, since is transitive. We’ll say that L is -closed if L = SUBSEQ(L). So Theorem 1 is equivalent to the statement that a language L is regular if L is -closed. The remainder of this note is to prove Theorem 1.
WebTheorem (Novikov 1955, Boone 1957) There exists a nitely presented group with unsolvable word problem. These proofs were independent and are quite di erent, but interestingly they both involve versions of Higman’s non-hopf group. That is, both constructions contain subgroups with presentations of the form hx;s 1;:::;s M jxs b = s bx2;b = 1 ...
WebAug 25, 2024 · The theorem implies at once Higman's lemma. The proof is elementary and self-contained (the most advanced thing one is using, is the pigeonhole principle), but I … citgo / jefferson food marketWebAbstract. The Nagata-Higman theorem for the nilpotency of nil algebras of bounded index was proved in 1953 by Nagata [Nal] over a field of characteristic 0 and then in 1956 by Higman [Hg] in the general setup. Much later it was discovered that this theorem was first established in 1943 by Dubnov and Ivanov [DI] but their paper was overlooked by ... citgo lithoplex rtWebOct 1, 1990 · The Nagata-Higman theorem for the nilpotency of nil algebras of bounded index was proved in 1953 by Nagata [Nal] over a field of characteristic 0 and then in 1956 … citgo lithoplex rt 2WebYerevan State University Abstract We suggest a modified and briefer version for the proof of Higman's embedding theorem stating that a finitely generated group can be embedded in a finitely... citgo lithoplex rt #2Webgraph. A rst veri cation that the given graph is the Higman-Sims graph is given as Theorem 1 whose proof is left as an exercise. Section 4 introduces some of the auto-morphisms of the graph which can be used to show that the Higman-Sims graph is in fact a Cayley graph. These automorphisms also give a hint of the remarkable symme-tries of this ... dianetics ukWebAbstract For a quasi variety of algebras K, the Higman Theorem is said to be true if every recursively presented K-algebra is embeddable into a finitely presented K-algebra; the … citgolubes rebatesWebAug 13, 2024 · Higman's proof of this general theorem contains several new ideas and is quite hard to follow. However in the last few years several authors have developed and … citgolubes.4myrebate.com